Unit testing and mocking with cmocka

Andreas Schneider

Principal Software Engineer

devconf.cz 2020

About me

Source Code Artist working on:

e Samba - The domain controller and file server
® |ibssh - The SSH Library

e cmocka - a unit testing framework for C

e cwrap - Client/Server testing made easy

e darktable - image raw developer

[ineage0S - Android with Privacy Features

The talk will cover:

nat is cocka?

nat features does cmocka provide?
nat is mocking?

ow to write a mocking test?

===

1

What Is cmocka?

cmocka ...

* isan elegant unit testing framework for C
e it only requires the standard C library
e offers support for mock objects.

cmocka ...

works on a range of computing platforms (including
embedded) and works with different compilers.

Linux/BSD/Windows - GCC/Clang/MSVC

Mission Statement

The goal of this project is to provide a powerful testing
Framework for C, on different platforms and operating
systems, which only requires the standard C library.

It has a wehsite

cmocka.org

https://cmocka.org/

Features of cmocka

Test fixtures and groups

Test fixtures are setup and teardown functions that
can be shared across multiple test cases to provide
common functions that prepare the test environment
and destroy it afterwards. This is also supported for
groups.

Exception handling

e cmocka is able to recover the test state if there
are exceptions like a segfault.

e Handling for SIGSEGV, SIGILL, etc.

e An attached debugger will stop when the
segfault occurs

Exception handling

cmocka doesn't use fork () for exception handling in
test cases!

e fork() is not available on all platforms

e fork() isimplemented diffrently on some 0Ses
(Linux vs. MacOSX)

Output formats

cmocka has it's own console output format, but
supports additional message formats like:

e Test Anything Protocol
e Subunit (used by Sambal)
e xUnit XML (parsed by Jenkins)

#1nc lude
#1nc lude
#inc lude
#inc lude
#1nc lude

<stdarg.
<stddef.
<sdtint.
<setjmp.
<cmocka.

/* A test case that does nothing and succeeds. */
static void null_test_success(void **state) {

(void) state; /* unused */

¥

int main(void)

const struct CMUnitTest tests[] = {
) cmocka_unit_test(null_test_success),

return cmocka_run_group_tests(tests, NULL, NULL);

Assert functions

We have a lot of assert functions for ...

assert_true(x)
assert_false(x)

assert_int_equal(a, b)

assert_int_not_equal(a, b)

assert_in_range(value, minimum, maximum)

assert_not_in_range(value, minimum, maximum)

assert_float_equal(a, b)

assert_float_not_equal(a, b)

assert_non_null(x)
assert_null(x)

assert_return_code(rc, errno)

assert_string_equal(a, b)

assert_string_not_equal(a, b)

assert_memory_equal(a, b)

assert_memory_not_equal(a, b)

..and a lot more

APl Documentation

api.cmocka.org

https://api.cmocka.org/

/* A test case that compare intetgers and will fail. *
static void integer_failure(void **state) {
int 1 = 4;

assert_int_equal(i, 5);

assert_sockaddr_equal(ss, a)

assert_sockaddr_port_equal(ss, a, prt)

https://gitlab.com/cwrap/socket_wrapper/blob/master/tests/test_echo_tcp_get_peer_sock_name.c#L33

#define assert mock_assert
volid showmessage(const char *message) {
assert(message);

¥

int main(void)
expect_assert_failure(show_message(NULL));
printf("succeeded\n");
return 0;

}

Mocking in unit tests

Standard unit test

An example

Lets write a test for uptime’

./example/uptime/uptime
up 3 days, 24 minutes

Source code be found here.

https://gitlab.com/cmocka/cmocka/tree/master/example/mock/uptime

Uptime
consists of two functions

® calculate uptime()
® read proc uptime()

Uptime

calculate uptime() calls read proc uptime()

krikkit:~ # cat /proc/uptime

436821.10 1066410.33

calculate uptime() poducesahuman readable
Form out of those two doubles.

Unit test with a subfunction

Uptime example

Q
£
—

o

>

(&)

(@)

P —

9
pe)

©

[b)

—

Uptime example

Why?

e /proc/uptime constantly ticks!

Solution: We need mocking!

What is mocking?

Mocking is a way to create instrumented objects that
simulate the behavior of real objects.

What is mocking?

to mock = to imitate something

Mocking in unit testing is a way to isolate behaviour of
complex algorithms. This is useful if some functions
are impractical to incorporate into the unit test.

Mocking test

c
o
=
[S]
o
=)
(=
4
[S]
(@)
=

Mocking test

Mock function

Subfunction

GNU linker magic

Use a wrapper function for a symbol.

ld --wrap=<symbol>

Supported by 1d.bfd, 1d.gold and 1lvm-1d

Mocking test

__wrap_read_proc_uptime()
(1)

instrument

(3) linker res

read_proc_uptime()

__real_read_proc_uptime()

int read_proc_uptime(double *uptime_secs, double *idle

int _ wrap_read_proc_uptime(double *uptime_secs, doubl

{
}

Linker function wrapping

Linker makes

read_proc_uptime()

available under the symbol

__real_read_proc_uptime()

Linker function wrapping

The symbol

read_proc_uptime()

will be resolved to

__wrap_read_proc_uptime

We still can call the original function in our mock function!

__real_read_proc_uptime()

Symbol hinding order!

Symbols are searched and bound by the linker in the
Follow order:
|. The executable itself
2. Preloaded libraries
3. Libraries in linking order

Check also -wrap resolving in man 1d

Debug symbol binding
With GNU Id.so ..

LD_DEBUG=symbols ./examples/uptime/uptime

See man 1d.so

Writing mocking functions

Features for mocking

e Parameter Checking
e Mocking
e (all ordering

void mytest(void **state) {
expect_string(__wrap_mock, food, "wurst");

myfunction("wurstbrot");

}

int _ wrap_mock(char *food) {

check_expected(food);

¥

https://api.cmocka.org/

void mytest(void **state) {
int rc;

will_return(__wrap_mock, 0);

rc = myfunction("wurstbrot"),
assert_return_code(rc, errno);

¥

int _ wrap_mock(char *name) {

return mock_type(int);

}

https://api.cmocka.org/

Call ordering

e Allows you to check that mock functions are
called in the right order!

api.cmocka.org -> Call Ordering

https://api.cmocka.org/

How to write a mocking test?

This Is an exercise for you!

Take a look at the cmocka source code:

example/mock/uptime/

https://gitlab.com/cmocka/cmocka/tree/master/example/mock/uptime

Another mocking example

e Samba source code:

lib/util/tests/test talloc keep secret.c

Test that verifies that memset is called when a talloc
pointer is defined as a secret.

https://gitlab.com/samba-team/samba/blob/master/lib/util/tests/test_talloc_keep_secret.c

GAME OVER

o [witter:

https://twitter.com/cryptomilk
https://blog.cryptomilk.org/

